What is GOM Inspect

GOM Inspect is a software for analyzing 3D measuring data from fringe projection or laser scanners, coordinate measurement machines (CMM) and other measuring systems. The GOM software is used in product development, quality control and production.

Polygon Meshes From Point Clouds

3D meshes for parts and components are calculated from 3D point clouds for visualization, simulation, surface reconstruction and nominal-actual comparison. The meshes are also suited for virtual assembly based on measurements from different sources. The precise polygon meshes can be exported to several standard formats such as STL, G3D, JT Open, ASCII and PLY. Polygon meshes can be exported in STL format for applications such as 3D printing.

3D Mesh Processing

Polygon meshes can be smoothed, thinned and refined. In addition, holes in the mesh can be filled and curvatures can be extracted. The mesh is processed using curvature-based algorithms and tolerances. The software provides the user with a live preview of each processing step. Furthermore, a golden mesh can be determined by finding the best mesh or calculating an average mesh.

CAD Import

Neutral CAD formats such as IGES, JT Open and STEP as well as native formats like CATIA, NX, Solidworks and Pro/E can be imported into GOM Inspect Professional at no extra costs. The individual data formats are imported via drag & drop and are automatically identified and assigned by the software.

CT Import

Scanned volume models can be directly visualized and evaluated in the software. Volume data captured by computer tomographs can be imported via drag & drop in common formats (.vgi, .vgl, .pcr, .exv, .rek) or as raw data and can be directly evaluated. In addition, the different materials of a scanned object can be imported as separate surface meshes. Besides separately scanned objects, the software also allows importing data sets including several objects that were scanned with one CT simultaneously. Up to 32 objects can be imported as individual meshes at once. The GOM Inspect software offers different polygonization modes for importing data.


In concepts such as PLM (Product Lifecycle Management), as much process and part information as possible is gathered in the form of PMI (Product Manufacturing Information) to ensure a comprehensive and company-wide management and control of production chains. GOM supports interfaces for digital transfers of inspection features. Quality criteria and datum systems that were implemented by a semantic construction into the CAD can be transferred digitally and evaluated in a context-sensitive way. Since the inspection plan is generated directly during the CAD import, additional work-intensive programming is not necessary.


The GOM 3D software includes all standard alignment functions. These include: RPS alignment, hierarchical alignment based on geometric elements, alignment in a local coordinate system, alignment by reference points as well as various best-fit methods, such as global best-fit and local best-fit. Customers can also use their own specific alignments such as “Balanced beam” or “Equalized nested”, for example, for turbine blades.

Nominal-Actual Comparison

The computed polygon meshes describe freeform surfaces and standard geometries. These can be verified by comparing surfaces with a technical drawing or directly with a CAD data set. A 3D analysis of surfaces as well as a 2D analysis of sections or points can be implemented in the software. CAD-based generation of geometric elements such as lines, planes, circles or cylinders is also possible.

GD&T Analysis

Corresponding GD&T elements are, for example, planarity, parallelism or cylindricity. Both, a standardized analysis of 2-point distances and of the maximum material requirement as well as the position tolerance in local datum and coordinate systems are possible. GOM supports ISO standards as well as ASME standards and continuously implements updates of the standards into the software.

Airfoil Inspection

GOM Inspect Professional combines general inspection functions with application-specific evaluations. Native quality control functionality for the analysis of airfoils and turbine blades include: inspection of profile mean line, profile centroid and profile thickness of turbine blades based on 2D sections. The profile’s center of gravity, radii and twist can also be calculated.

Curve-Based Inspection

GOM Inspect Professional closes the gap between point-based and surface-based inspection. Full-field digitized data is used to apply construction functions for curves and to visualize their individual properties. Edge curves can, for example, be captured, radii and character lines analyzed and spline curves created. Flush & gap analysis is another element provided in curve-based inspection.

Point-Based Inspection

The evaluation function can also be used for point clouds. This includes, for example, measurement of distances between individual points and a comparison of points with the CAD model. Construction functions can then be applied to create standard geometries based on several points. This allows an analysis of dimensional accuracy or a GD&T analysis on the generated elements, including flatness, cylindricity or positional accuracy.

Motion and Deformation Analysis

Analysis of motion and deformation is carried out using a component concept. Points are divided into coherent groups and defined as components. Transformations or corrections to rigid body movements can then be calculated for these components. The 6DoF analysis serves to determine the translation and rotation movements in all directions. Vector fields then help to visualize point movements and deformation over time.

Inspection of Surface Defects

Optical metrology allows a series-accompanying and reproducible evaluation of surface defects. The results are objective and available in a shorter time than with the conventional method of the grind stone. For the surface defect map to match the form of the part directly, the GOM Inspect software makes an inspection of surface defects even in curved directions possible. Furthermore, the software computes the direction of the surface normals automatically. Only one defect map is required to inspect large areas that are to be analyzed in the same direction according to the inspection plan.

Parametric Inspection

The GOM software is based on a parametric concept, which forms the underlying foundation for every function. This parametric approach ensures that all process steps are traceable, thus guaranteeing process reliability for measuring results and reports.

Teaching By Doing

With Teaching by Doing, any completed evaluation can be easily applied to two or more parts. Thanks to the parametric design, the software automatically stores each individual inspection step. There is no difference between single and multiple evaluations. All evaluation steps can be operated without scripting, previous planning or user intervention, so that no time is spent on programming.

Trend, SPC and Deformation Analysis

The underlying parametric concept of the GOM software enables a trend analysis for multiple evaluations, for example, in statistical process control (SPC) or for deformation analysis. This enables full-field evaluation of several parts or stages within a single project and offers functionalities for determining statistical analysis values such as Cp, Cpk, Pp, Ppk, Min, Max, Avg and Sigma.

Virtual Measuring Room (VMR)

The VMR is a virtual, yet functional representation of the real measurement environment, consisting of sensor, kinematics, component with fixture and measurement plan. Combined with the parametric inspection workflows offered by GOM Inspect Professional, the VMR enables the execution of automated measuring procedures: import of measurement plans, offline and online programming, 3D measurement simulation, collision control, process reliability, data acquisition, inspection and reporting.


The reporting module allows creating reports including snapshots, images, tables, diagrams, text and graphics. The results can be visualized and edited in the user interface and then exported as a PDF document. Templates are reusable and each scene saved in a report can be restored in the 3D window.

Free GOM Inspect Software

GOM Inspect is a free 3D inspection and mesh processing software for generating polygon meshes and can be used as a viewer for measuring results and CAD data. The free software is designed for users who process and evaluate 3D data. In GOM Inspect, the parametric functionality is not fully available. The parametric functionality ensures the traceability of measuring data. However, the creation of templates or macros for multiple evaluation and the parametric inspection functionality are only fully available in GOM Inspect Professional. With GOM Inspect, employees, suppliers and customers have a free tool available for evaluating and analyzing measuring results together.

Comparison GOM Inspect and GOM Inspect Professional

Polygonize Scanner Data yes yes yes
Mesh Processing yes yes yes
CAD Import Basis yes yes yes
CAD Import Native no yes yes
Import/Export Measurement Data yes yes yes
Parametric Inspection no yes yes
Traceability yes yes yes
Teaching by Doing no yes yes
Alignments yes yes yes
Nominal-Actual Comparison yes yes yes
GD&T Analysis yes yes yes
Trend Analysis yes yes yes
Creating Trend Projects no yes yes
Airfoil Inspection yes yes yes
Surface Defect Map yes yes yes
Curve-Based Inspection yes yes yes
Point-Based Inspection yes yes yes
Scripting no yes yes
Templates no yes yes
Reporting yes yes yes
Virtual Measuring Room (Additional Modules) no yes yes
Flexible Solution for Network Licenses no no yes

The free GOM Inspect software is also a viewer for all measurement results that are created with GOM Inspect Professional.